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Collisional cross sections and momentum distributions in astrophysical plasmas:
Dynamics and statistical mechanics link
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We show that in stellar core plasmas, the one-body momentum distribution function is strongly dependent,
at least in the high velocity regime, on the microscopic dynamics of ion elastic collisions and therefore on the
effective collisional cross sections if a random force field is present. We take into account two cross sections
describing ion-dipole and ion-ion screened interactions. Furthermore, we introduce a third unusual cross
section to link statistical distributions and a quantum effect originated by the energy-momentum uncertainty
owing to many-body collisions. We also propose a possible physical interpretation in terms of a tidal-like force.
We show that each collisional cross section gives rise to a slight peculiar correction on the Maxwellian
momentum distribution function in a well defined velocity interval. We also find a possible link between
microscopic dynamics of ions and statistical mechanics in interpreting our results in the framework of nonex-
tensive statistical mechanics.
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[. INTRODUCTION action (described by the well-known Rutherford cross-
In a dense neutral plasma such as, for instance, the astrS?Ction formulg, many different screening potentials have
P ’ ! een proposed for many years in order to provide effective

physical plasma of a stellar core with mean potential energy, ,qe|s for several astrophysical conditiof. Therefore,
of about the same order.of mag.’““%de as thermal eNer9%¥creening and many-body effects, whose importance relies
[1,2], a random microscopic electric fieldsually called an

leciric microfield ari Al voint. | ioin d on the fact that they strongly enhance thermonuclear reaction
eectrllc micro |ec|]a_r|sesbat any spatia Ip0|r_1t. rt]S orllgln 0€S rates, are also important, lying on a kinetic framework, as
hot rely on correlations between particles in the plasma, an ey modify the collisional cross section between ip@k
indeed it is also present in ideal plasmas of statistically in-

) L In this paper, we analytically derive the one-body distri-
dependent particles; rather, it is due to local thermal ﬂuctuabu bap y y y

. in th o fiong3l C v, the microfield tion function of momentum starting from a kinetic equa-
tions in the position of ion$3]. Commonly, the microfield 1 in which we set three cross sections of interest in dense
strength is not negligible, being on the same order of mag

X ; . and weakly nonideal plasmas. Our calculations are based on
nitude as the Coulomb field of a unit charge at the charac y P

N . . . the existence of a random force figtd which can be justi-
teristic Wigner-Seitz radps. As Romanovsky and Ebelifig ._fied either by the theory of electric microfiel¢ss outlined in
pointed out, the dynamic enhancement of nuclear fusio

q lectri dom fields is | Vi q rI‘-?efs.[3,4]) or the theory of dissipative random forces in the
rates due to electric random fields Is large only in very €NS@pproach of the Langevin equation for Brownian motion

stars like white dwarfs; on the contrary, its importance inside(see for example, Ref7]), and can be originated from den-
the Sun’s core is presently believed to be limited. sity fluctuations in the plasma. We are comforted in this line

| We_ show that a raf‘d‘)][‘_"' lgelg ?f generic nath:]andom h_of research also by Einstein’s criticism of the Boltzmann
electric or magnetic microfields belong, among others, to thig, .y apijity relation, based on the argument that statistical

ca}tegory may play a crupial role, as it ianue.nC(_as the UPPEThechanics may only be justified in terms of classical or
t?.l| of t_he qne—body stationary momentum dlstrlbgtlon fur,‘c'quantum microscopic dynami¢8].

tion of ions in a dense neutral stellar plasma, leading to slight' | | 4 first part of our papeiSecs. 11, Ill, and IV}, we use
deV|at|0_ns from a pure _M_axwelllan dlstr|_but|on. Further- a kinetic approach to describe the motion of particles sub-
more, different elastic collisional cross sections among intertoited to a generic random force field with finite relaxation

acting ions may significantly influence the tail of the distri- time (i.e., not &-correlated. The stationary solution can be

butmn, and each one provides corrections in a CharaCter'St'é;xpressed in terms of collisional cross sections and colli-
velocity range only.

. : _ sional frequencies; therefore, we may establish a link be-
We wish to stress here that in astrophysical plasmas,een the type of particle collisions and the form of station-
many cﬁfferent c_oII|S|onaI processes can be active at .th%ry distribution functions that can differ from the equilibrium
same time, provided that we consider different velocity in-y 2, vellian function. We then define parametecharacter-
tervals. Besides, for instance, the usual pure Coulomb intef;, the deformation factor of our distribution and we cal-
culate it in terms of known physical quantities. Interpreting
this deformation on the physical ground of nonextensive sta-
*Electronic address: fabrizio.ferro@polito.it tistical mechanics and Tsallis statistics as a special [@se

TElectronic address: piero.quarati@polito.it parameteiq can be expressed in terms of dynamical quanti-
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ties such as cross section, ion-correlation parameter, and 2 F2 df keT df

. . . . +———— + g f+l_ =0 (1)
plasma parameter. A dynamical realization of nonextensive T332 dv v u dv '
statistics and, in general, of superstatistics has been com-
pleted by Beck10] by using stochastic differential equations wherev is the modulus of the relative velocity between two

with spatiotemporally fluctuating parameters. ions, w is their reduced mass;(v) is the collisional fre-
In the second par{Sec. V), we consider the quantum quencykgT is the thermal energy, anel which is defined as

energy-momentum uncertainty due to contemporaneous in- 5

teraction among many particles of plasma. We use the K:Z/‘_

Kadanoff-Baym ansatl1] and follow the approach of Gal- m?’

itskif and Yakimetq12], which leads to the appearance of a
power-law tail in the momentum distribution function. This
function shows an enhanced tail at high momentum depenqér
ing on collision frequency and collisional cross section. As a
consequence, we show a link between nonextensive statisti- 2 F?
cal mechanics and dyn_amics, t_)y highlighting the type of mi- De=+ 5#2_1,2

croscopic elastic collisions acting among particles and how

collision frequency is related to momentum distributions.is the perturbation on the diffusion coefficient of the system
Then we investigate the cross section that reproduces théue to forceF, and the corresponding particle flux is given
nonextensive distribution function, limiting ourselves, for by

is the energy transfer coefficiefir an average value of)it
Let us discuss briefly the origin of the double sign in the
m containing the random ford¢ein Eq. (1). The quantity

simplicity, to the caseg>1, and we show that the corre- df
sponding interaction looks like a tidal-like force superim- Je= ¥ Den—,
posed on the two-body attraction, giving a collision cross dv

sectionof(ep) ~ Vep, Whereg is the relative kinetic energy. p peing the ion particle density of the plasmaFlfwere an
The quantum approach that we follow in our discussion reelectric microfield, i.e.F=eE (with e equal to the electric
lies on equilibrium conditions of the System; therefore, Ourcharge of one |Oh the Corresponding Sign would be positive,
final result is a real equilibriuntnot metastable or stationary  thus enhancing the actual diffusivity of the system, while in
distribution function that differs from the equilibrium the opposite case total diffusivity would drop. Therefore, we
Maxwell-Boltzmann distribution. The existence of such aNjntroduce the double Sign since we wish to deal with the
unusual equilibrium function is due to the quantum uncermost general situation, in which either subdiffusivity or su-
tainty as brleﬂy described in Sec. V. perdiffusivity may be Significant'

The analytical solution of Eq1) reads

v !

Il. KINETIC EQUATION UNDER A GENERALIZED

, v
RANDOM FORCE f(v) =f(0)ex -f dv > | 2
0
kgT + =
A kinetic equation describing electrons in a plasma under B 3 uk?

an external electric field, in which collisions bgtween elec—Where the constant(0) should be calculated through the
trons and neutral atoms are present, was derived by Cha

man and Cowlind13], by Spitzer{14] and by Golant, Zilin- %ormalization condition

skij, and Sacharoy15]. They express the actual one-body oo )
velocity distribution function as a formal series, 47Tf dv'v"*f(v") = 1.
0
FV)=f+fy+f+ e, Let us now define a characteristic strength of the general-
ized random field= as
wheref=f(v) is the isotropic componeitwith v=|v|), while Fo= 1\ kuksT.

f1, f5, and so on describe next orders of anisotropy induced ) N

by the external field. In additiorf(v) may be only a slight Then, if the condition

perturbation of the Maxwellian distribution function. F2 < F2 3)
Here, we adopt their equation in order to derive the mo- c

mentum stationary distribution of ions, but we replace theholds, i.e., if the random force is negligible, E8) gives the

external electric field with a generalized random foFcand ~ Maxwellian distribution function at temperatuffe The cen-

focus on isotropic functiorf only. The elastic collisional tral point is that in this case the Maxwellian function is a

cross sections that we are considering describe the interaseolution of the kinetic equatiofi) regardless of any assump-

tion among ions and among ions and electric dipoles of potion about collisional frequency of the plasma.

larized neutral compounds of the Wigner-Seitz spheres. All  On the contrary, if the condition in E¢3) fails, the form

these cross sections will be discussed in the following secef the solutionf(v) is determined by the explicit dependence

tions. of the collisional frequency on relative velocity. The v(v)
Thus, considering the plasma component consisting ofrequency is itself a function of the collisional cross section
ions of masan, the kinetic equation read45] o(v), as
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v(v) =nva(v). (4) From Eq.(10), we immediately obtain
Thus, in this case, Eq2) leads to a Maxwellian provided )= v M ) (11)
that we choose the(v)=ag™ cross sectiona, being a 2kgT  2kgT nEn
suitable constaht and that we renormalize the temperature h
of the plasma in the following fashion: where
2
v 1
2 F? I,(v) = du———— (12)
keTe = kT 2 ———, (5) ! cu+cu+r+ 1’
3 kpunPad 0 2 1
where T is an effective temperature which will be of cen- L€t us now define the following parameter:
tral importance in our subsequent discussion. C%
K=—-—+7+1,
I1l. ANALYTICAL SOLUTION OF THE KINETIC 4c;
EQUATION whose sign is physically relevant, as we are about to show.
In the following, we discuss the effect of three different ! KI<O’ Eq. (12) gives, apart from an unimportant nu-

cross sectionsgy, oy, and o, whose explicit functional de- Merical term,
IpendeIn;:e on relative velocity, togelzther with that of their col- I 1 (20202 +cy- 2\"*|K|Cz) . t
isional frequencies, is, respectively, = const|,

q p y ! 2\'/|K|CZ 20202 + Cl + 2\’/|K|C2

_ -1
o0(v) = gy, which in turn, through Egs(11) and (9), yields our first

result (for K<0),

vo(v) = Nay, (6) R
f(v) exp< p’ )(20202+01‘ 2\1|K|c2)’” et
_ V) < - .

oy(v) = ay, 2ksT/\ 2c,0% + ¢, + 2v|K|c,

11(v) = Ny, @) _ In this case, cross sectiar dominates and _the general-
ized random force fiel& does not play any role in the region
of interest for fusion reaction rate calculations in astrophysi-

0-2(0) = Ly,

cal plasmas, as the perturbation from the Maxwellian func-
5 tion vanishes in the limit — + (nevertheless, it can be of
vo(v) = Nagv®, (8 interest in studies of some atomic processes such as radiative

where ag, @, and a, are dimensional constants. In Sec. |v, 'écombination, whose cross section increases gses 10
we shall discuss the physical meaning of the previous cros&ero and which therefore has rates sensibly modified by
sections in dense astrophysical plasmas. slight corrections at low velociy

We state the hypothesis of absence of interference be- AS far as astrophysical plasmas are concerned, a more
tween the three collision types, namely we assume that totd!t€resting physical situation occurs whir0, namely, if
collisional frequencyr could be cast in the following ap- the condition

proximate fashion: Tet . Vi af
s 227 422 (13)
V2 = V(Z) + yi + V%, T 4V0V2 4a0a2

because different types of collision act significantly only in holds. Condition(13) is fulfilled providing force fieldF is

separate velocity intervals as is evident from the functional o — A2l
dependencies reported in E@S), (7), and(8). F> n\/—K,LLkBT(l—ZOZ), (14)
Let us now express the solution of E®) as ay
f(v) = f(0)exfd— 1(v)], (9) in the case of superdiffusivity, or instead
. . . 3 12l — o
where we have defined the integral function F< n\/_KMkBT(M), (15)
v pu'do’ =
1) = . > 2 1 when considering subdiffusivity.
kgT = 3 P S From Eq.(12), we obtain
1 (2 S, c 2 -1
v ! !
m v'dv I(v)=—J du{(\/—u+ +1
" kaTJo 1 ’ (10 kg K™ 2VKe,
I S
' ' 1 c c c
LHew™+cu = ,—larctar( \ Zv?+ 1_) - arctan,—l—] :
with ¢;=(ay/ ap)?,c,=(ayl ap)?, and 7=Te;/ T-1, according VKe; K 2Ke 2VKe,
to Egs.(5), (6), (7), and(8). (16)
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Starting from Eqgs(11), (12), and (16), we can express From Eg.(17) it follows that there exist three different

I(v) as a formal series of powers of, intervals of relative velocity in which the evaluated correc-
2 2 \2 2 \3 tions due to the random field are sufficiently large to be
I(v) = 22 +§( KU > 7( Hu ) , noteworthy. First of all, we observe that &, ~kgTeg, the
2kgTerr  \ 2KgTesr 2K Tess dominant factor is eXp-e,/ (kg Ter) ], namely the Maxwellian
where factor characterized by cross sectigp The exponential fac-
. tor with the & parameter, corresponding to collisional cross
S= + 2 F° sectiono;, becomes not negligible with respect to the Max-
T 3kunad wellian only whene,~kgTeq/|d]; it is also often called
the Druyvenstein factor. Finally, the third term
and exp—y(ep/ ke Ten)?] arises where, ~ |8/ y|kgTeq; as we shall
. 8 F2ksT o ( o ) 16 F* a2 briefly describe in Sec. V, it c?fn be realated to quahntu_mI
9 i o 2o2) 27 of Slr;esrr?él Sn.nomentum uncertainty effects in dense astrophysica
both being|dl,|y| <1. In conclusion of this section, let us summarize that if the
Therefore, the final form of the one-body distribution random force field is absent or negligible, in spite of the
function under generalized random fields reads presence of whatever kind of collisional cross sections, all
) 2 \2 stationary states which are solut|ons. of'the kmenc equation
f(v) = exp[— Hu ]exp{— 5( [l ) } have an analytical expression that coincides with the equilib-
2Kk Tos 2Kk Tes rium Maxwellian distribution function. Therefore, the nonex-
w? |2 tensive statistical description, at least in a classical frame-
X exp[— 'y( ) } , work, requires as a first condition that particles be subjected
2KkgTe to a sufficiently strong random force field and, as a second
which corresponds to an energy probability factor condition, that a constant collisional cross section de-
5 pending on hig_her positive powers of velogityhould act
f(sp) o exp{— —Sp—}exp{— _8p_> ] among the particles of the system.
kBTeff I(BTeff
& 3 IV. COLLISIONAL CROSS SECTIONS
X expl -y ko) | 17) IN ASTROPHYSICAL PLASMAS

where sp:p2/(2,u) is the center-of-mass kinetic energy, We wish toldisguss the ph):jsicalyiz_ani;g of the collisi(()jnal
given linear momenturp=pv. procesze_s re ﬁtek.mot‘rl’ and o, de n:je n dSe_c. Illhan
It is noteworthy that our result in EQ17) may be related, Inserted Into the kinetic equation in order to derive the one-
body distribution function.

at least for small deformations, to the nonextensive distribu-~ . ) . . .
Cross sectiomry(v), defined in Eq(6), is the most impor-

tion function at the same effective temperatiligg [9], -0 X oy
- tant one as it originates the well-known Maxwellian distri-
feo) o | 1-(1-q) €p (- (18) bution function even in the presence of a generalized random
P q Kg Tt ’ field. Our first unavoidable requirement is that the solution of

) ) _the kinetic equatiofiEq. (1)], at first order, shall be the Max-
whereq is called the entropic parameter. As can be straightye|jian function, because the actual kinetic solution For

forwardly shown after some manipulations, in the low defor-_ is indeed the Maxwellian, and we are dealing only with
mation limit (q—1)e,/(kgTer) — 0, Eq. (18) reduces to Eq. slight corrections.
(17), provided thaté=(1-q)/2. Thus, this condition estab-  "Fqjlowing Ref.[17], we can state that starting from an

lishes a link between the entropic paramedeand our pa- jnteraction force that depends on distance dsthe corre-
rameters which comes from microfield strength and crosssponding cross section is(v) «v~#D. Therefore, in the

sections. We point out that in the same limit, other distribu-case of cross sectiomy(v) «v™2, the underlying force goes
tions of generalized statistics also have the same behavior, 8¢ -5 \while the potential energy is proportionalrtd, and

explained in Ref[23]. we can interpret it as the cross section due to the interaction

We recall that in the recent past we have shown that if thgatween an ionic charge and an electric dipole induced by

generalized random force is due to an electric microfield disihe ion on the neutral system of charges composing a Debye
tribution, parameterd can be related to the nonextensive spherd15].

(Tsallis) _entropic parameteq and the following analytical On the contrary, if we considered a pure Coulomb inter-
expression can be derived: action due to a forcécocr 2 (with s=2), it would give a
1-q - collisional cross section proportional to# however, this
o= Tl =12a", case is not physically suitable in the presence of an intensive

random force field because of induced divergences in the
wherel is the plasma parameter ardis a dimensionless distribution function at low velocities. Krook and Wu
parameter accounting for ion correlations in the ion-sphershowed in the padtl8] that collisional cross sections going
model (0.4<a<1) [16]. like v™* andv~2 always produce a Maxwellian distribution
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after a sufficiently long time; however, their system is not 1 7(8,%)
subjected to a random force field. Sy(e,ep) = 7_7(8 — )2+ e, ey)]
Cross sectionry(v), defined in Eq7), was introduced by P P
Ichimaru[19] in the framework of an ion-sphere model for with
nonideal and weakly coupled plasmas with' @arameter of £\ 12
order unity, and with a small numbgr of ions |n3|_d_e the De- e ep) :h,,zon(s,gp) :fmgt(gp)(—) ,
bye sphere. In these physical conditions, the collisional cross 2
section, directly derived from the pure Coulomb one, is con- T

) T 22 'wherev,, (e, ¢,) is the total collision frequency ang(e,) is
stant according to the approximations of the model and it cag, collfglcgnalp():ross section q y ane(ey)

be cast in the simple form Let us take the example of a pure Coulomb interaction.

o1(v) = 2m(ad)?, We have that
wherea is the correlation factor already introduced in Sec. (6.5) = 2mhne’ ( 2¢ |1
Il and a is the interparticle distance. The correction due Neep) =772 )

to o, on the probability function of energy is of order P

ex-de2/ (ksTem?], and shows the same behavior as the so@nd the momentum distribution becomes
called nonextensive corrective fact@ee Ref[20]).

. . . . . nie
Cross sectionr,(v) will be described in the next section. f(ep) :stf(s,sp) :f dsﬁﬁy(s,sp)
o
V. EFFECTS OF QUANTUM ENERGY-MOMENTUM 2 e
UNCERTAINTY ON THE EQUILIBRIUM DISTRIBUTION = PPk T)sxz[fMB(Sp) +folep)], (19
FUNCTION B

Here we introduce simple arguments to synthetically ex-Wlt
plain the meaning and justify the use of cross sectig(v) ¢ _ &p
defined in Eq(8) and, at the same time, to show a possible ma(ep) = eXp - keT
link between quantum energy-momentum uncertainty and
nonextensivity. an

Quantum energy-momentum uncertainty in weakly non- 2
ideal dense stellar plasmas influences thermonuclear rates. In folep) = —C(kgT)%?
fact, in classical physics, energyand momentunp (or &, 3m
=p?/2u, with u reduced magsare linked by the dispersion \hereC is a constant depending on density
relation 8(e, &) = (e —&p,). Nevertheless, if the particles can- At high momenta, the last term in E4L9) can be many
not be considered free, and e, are independent variables. orders of magnitude greater than the first one and represents
For instance, an ion tunneling the Coulomb barrier during aan enhancement of the tail, with important consequences in
thermonuclear fusion reaction can interact simultaneouslyhe calculations of nuclear fusion rates.
with many other particles. In this case, the dispersion relation e wish to verify if, by using a certain elastic collision
is given by the functiors,(e, ;) defined using the ansatz of cross section, we can obtain from the quantum uncertainty
Kadanoff and Bayni11]. Under equilibrium conditions, and effect the nonextensive Tsallis distribution, limiting our-

this time without any random force field, the energy andselves, for simplicity, to the case of entropic parameger
momentum generalized distribution function can be written>1 [9].

Iule

as Following (and adapting to our present needs energy fluc-
n(e) tuations instead of temperature fluctuatipitise approach
f(e,ep) = ——8,(e,8p), outlined by Beck and Cohe[R23], we may state that any
™ non-Maxwellian energy probability function should be cast
with in the form of a Laplace transformation of the function
5(E,ep) which describes the nonideality of the systg29],
ImER(e,sp) .
S)(,8p) = 2 R2’ * E
(e—ep- Re=R)2 + (Im=R) f(ep) :f dE exp - P 5(E,ep).
0 B

wheren(e) is the particle number distribution arﬁf‘(s,gp)

is the mass operator for the one-particle retarded Green func- The function&(E,e;) must be assumed to be a gamma

tion. (or ) function, in order to ensure thé(e,) is a nonexten-
Galitskii and Yakimets[12] (see also Refd21,22) de-  sive (Tsallig distribution[10,23.

rived that the quantum energy-momentum indeterminacy and Let us compare this integral with the integral of Ef9),

a nonzero value of 1@R lead to the nonexponential tail of which can be written explicitly asf(ep)=/de exp(-s/

the energy probability factof(ep). kgT)d,(e,g,). Quantum uncertainty and nonextensivity are
We limit ourselves to the case of a dispersion relation oftwo different and distinct causes of deformation of the
Lorentz type, Maxwell-Boltzmann distribution. Nevertheless, they give the
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same effect if the microscopic interaction among the parthe virial theorem to this case, we obtain negative kinetic
ticles (i.e., the collisional cross sectipris of a particular energy, which is, in fact, understandable and admissible by
nature as we discuss below. the uncertainty principle.
Let us turn our attention to the physical property of inter-  We derive the analytical expression @by equaling the

est, which is “width” D¢ of the &(E, ) distribution; it can  complete expressions &fyg andDq. We obtain
be shown that for the nonextensive distribution function, the

g 2 - (he)n?(2)? RS
width is Dye~ ey, While for the quantum uncertainty the =l 0
Do~ 0®(ep)e,, relation holds, wheres(s,) is the collisional 2(uc?)  fq
cross section. If we now impose that superextensivity and . . . .
quantum uncertainty give the same physical effect on distriWh_?Le” is the E_"asrtnatﬁenSlt_)t/ ary] is t())f (irr]der %ftutnltg[Zi]. t
bution functions, we should require tha(ap)oc\f'sp or, in € correction to the unity may be thougnt to be due 1o

the many-body effect over the two-body interacting system.

terms of relative velocityo(v)=o,(v)<v. Thus, the cross . i .
sectiono, that we used in Sec. Ill is strongly related to both As an examp!e, let us make the foIIo_Wlng numerical approxi-
2 j mate evaluation ono: if the correction is on the order of

quantum and nonextensive statistical effects. The nonexter)- 0 e g _ .
sive and the GalitskiYakimets distributions result given by ?020/;’1’ ;?gtgr?npslglg ;ng ~fT60’ slr;c\i/)Ro~105 fm, we obtain,

the same expression.

Let us recover the behavior of the interaction force re- fo =~ 10712 MeV/fm.

sponsible for cross sectian(e,) ~ Ve, We can write its de- 0

pendence on the relative coordinatef the two interacting Before concluding this section, we remark that the nonex-

particles ag17] tensive distribution usually describes metastable states or sta-

tionary states of nonequilibrium systems. On the contrary, in
r\s this case, quantum uncertainty with collisional cross section
Fir)=fol =] o o . .

Ry a(ep) ~ Vep gives a distribution function which belongs to an

equilibrium state, although different from the Maxwell-
where f; is a dimensional constanR, is a characteristic Boltzmann distribution. Other generalized distributions have
distance of the two-body center of mass with respect to @ecently been proposd@7]. For situations with small defor-
given origin, ands is a negative or positive integer. mation, our arguments are valid also for these distributions.
Defining the collisional cross section as

VI. CONCLUSIONS

o= nd?
_ We have set a kinetic equation suitable to describe the
with stationary states of a weakly nonideal plasma of a stellar core
1U(s-1) subject to generalized random forces. Provided that a random
d~ (foiz) , force satisfying conditior(14) for superextensivity of15)
Ip| for subextensivity is present, the momentum distribution

function can be cast in the simple fashion of Ef7) to

in order to have the requested behaviorodéy) = vep, We  \inich  pesides the well-known Maxwellian factor, other

must §els=—:_%. Let us reca.ll that the_case 9#_—3 is, from terms also contribute.
the point of view of the orbit differential equation of motion,  the momentum distribution function is formally identical
one pf the mtc_egrable cases, with solutions given in terms of; the nonextensive distributiotwhen q> 1) expanded in
elliptical funct|0ns[25]. . . . powers of(1-q) for slight deformation. An analytical ex-

_ Therefore, the interacting force responsible for the colli-peqgion ofy, the entropic parameter, can be derived in terms
sions that lead tar(ep) ~ Ve, reads of the elastic collision cross sections acting among the par-

[ \3 ticles of the system.
fo (—) . I<R, The main point is that each correction factor is due to a
Fo( =1 ™\Ro particular collisional process between ions, and that each of
0 r> them contributes in a well-defined interval of relative veloc-
H R01

ity, as shown at the end of Sec. Ill. All these corrections are

where the cutoff is needed in order to avoid divergences o§mall, nevertheless they are not negligible at high energy,
the potential energy. i.e., in the region of ion spectrum of predominant interest for

We may argue that forcEq(r) can be understood as a calculations of nuclear reaction rates in astrophysical plas-
tidal-like force[26] if we assume that an attractive central mas.
force of intensityfg, centered at a distandg, from the We have stressed that in physical conditions as, for ex-
center of mass of the two interacting particles separated by ample, stars witH"=1, many collisional processes may be
distancer, is superimposed. The tidal-like force acts globally active, even at the same time, and that each one of them is
over all the particles of the system. This is the dynamicaldescribed by a cross section with a dependence over velocity
requirement to recover the nonextensiVsallis) distribution  stronger(proportional tov™,v°, or evencv) than the simple
in the framework of quantum energy-momentum uncertaintyCoulomb scatteringproportional tov™). This fact is inti-
It is noteworthy and interesting to remark that by applyingmately related to statistical many-body effects and represents
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a link between dynamic@he type of two-body elastic colli-
siong and statistical mechanid¢the momentum distribution
function of the stationary states involyed

PHYSICAL REVIEW E 71, 026408(2005

bution function withg>1. The requested behavior of the
cross sectiomr(e,) is due to an interaction similar to a tidal-
like force. Therefore, the analogy between the quantum un-

Finally, in the framework of a quantum many-body de- cerainty effect on the distribution and the nonextensive ef-

scription of the equilibrium state, considering the energy
momentum uncertainty due to the noncommutativity of po
sition and momentum operators, we have found that if th

collisional cross section(e,) behaves Iike&a?, the distribu-
tion function coincides with the nonextensiyEsallis) distri-

fect is achieved provided that an overall attractive interaction

és superimposed on the two-body interaction. This again rep-

resents a possible link between dynamics and statistical me-
chanics.
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