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We show that in stellar core plasmas, the one-body momentum distribution function is strongly dependent,
at least in the high velocity regime, on the microscopic dynamics of ion elastic collisions and therefore on the
effective collisional cross sections if a random force field is present. We take into account two cross sections
describing ion-dipole and ion-ion screened interactions. Furthermore, we introduce a third unusual cross
section to link statistical distributions and a quantum effect originated by the energy-momentum uncertainty
owing to many-body collisions. We also propose a possible physical interpretation in terms of a tidal-like force.
We show that each collisional cross section gives rise to a slight peculiar correction on the Maxwellian
momentum distribution function in a well defined velocity interval. We also find a possible link between
microscopic dynamics of ions and statistical mechanics in interpreting our results in the framework of nonex-
tensive statistical mechanics.
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I. INTRODUCTION

In a dense neutral plasma such as, for instance, the astro-
physical plasma of a stellar core with mean potential energy
of about the same order of magnitude as thermal energy
f1,2g, a random microscopic electric fieldsusually called an
electric microfieldd arises at any spatial point. Its origin does
not rely on correlations between particles in the plasma, and
indeed it is also present in ideal plasmas of statistically in-
dependent particles; rather, it is due to local thermal fluctua-
tions in the position of ionsf3g. Commonly, the microfield
strength is not negligible, being on the same order of mag-
nitude as the Coulomb field of a unit charge at the charac-
teristic Wigner-Seitz radius. As Romanovsky and Ebelingf4g
pointed out, the dynamic enhancement of nuclear fusion
rates due to electric random fields is large only in very dense
stars like white dwarfs; on the contrary, its importance inside
the Sun’s core is presently believed to be limited.

We show that a random field of generic naturesrandom
electric or magnetic microfields belong, among others, to this
categoryd may play a crucial role, as it influences the upper
tail of the one-body stationary momentum distribution func-
tion of ions in a dense neutral stellar plasma, leading to slight
deviations from a pure Maxwellian distribution. Further-
more, different elastic collisional cross sections among inter-
acting ions may significantly influence the tail of the distri-
bution, and each one provides corrections in a characteristic
velocity range only.

We wish to stress here that in astrophysical plasmas,
many different collisional processes can be active at the
same time, provided that we consider different velocity in-
tervals. Besides, for instance, the usual pure Coulomb inter-

action sdescribed by the well-known Rutherford cross-
section formulad, many different screening potentials have
been proposed for many years in order to provide effective
models for several astrophysical conditionsf5g. Therefore,
screening and many-body effects, whose importance relies
on the fact that they strongly enhance thermonuclear reaction
rates, are also important, lying on a kinetic framework, as
they modify the collisional cross section between ionsf6g.

In this paper, we analytically derive the one-body distri-
bution function of momentum starting from a kinetic equa-
tion in which we set three cross sections of interest in dense
and weakly nonideal plasmas. Our calculations are based on
the existence of a random force fieldF, which can be justi-
fied either by the theory of electric microfieldssas outlined in
Refs.f3,4gd or the theory of dissipative random forces in the
approach of the Langevin equation for Brownian motion
ssee, for example, Ref.f7gd, and can be originated from den-
sity fluctuations in the plasma. We are comforted in this line
of research also by Einstein’s criticism of the Boltzmann
probability relation, based on the argument that statistical
mechanics may only be justified in terms of classical or
quantum microscopic dynamicsf8g.

In the first part of our papersSecs. II, III, and IVd, we use
a kinetic approach to describe the motion of particles sub-
mitted to a generic random force field with finite relaxation
time si.e., not d-correlatedd. The stationary solution can be
expressed in terms of collisional cross sections and colli-
sional frequencies; therefore, we may establish a link be-
tween the type of particle collisions and the form of station-
ary distribution functions that can differ from the equilibrium
Maxwellian function. We then define parameterq character-
izing the deformation factor of our distribution and we cal-
culate it in terms of known physical quantities. Interpreting
this deformation on the physical ground of nonextensive sta-
tistical mechanics and Tsallis statistics as a special casef9g,
parameterq can be expressed in terms of dynamical quanti-
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ties such as cross section, ion-correlation parameter, and
plasma parameter. A dynamical realization of nonextensive
statistics and, in general, of superstatistics has been com-
pleted by Beckf10g by using stochastic differential equations
with spatiotemporally fluctuating parameters.

In the second partsSec. Vd, we consider the quantum
energy-momentum uncertainty due to contemporaneous in-
teraction among many particles of plasma. We use the
Kadanoff-Baym ansatzf11g and follow the approach of Gal-
itski� and Yakimetsf12g, which leads to the appearance of a
power-law tail in the momentum distribution function. This
function shows an enhanced tail at high momentum depend-
ing on collision frequency and collisional cross section. As a
consequence, we show a link between nonextensive statisti-
cal mechanics and dynamics, by highlighting the type of mi-
croscopic elastic collisions acting among particles and how
collision frequency is related to momentum distributions.
Then we investigate the cross section that reproduces the
nonextensive distribution function, limiting ourselves, for
simplicity, to the caseq.1, and we show that the corre-
sponding interaction looks like a tidal-like force superim-
posed on the two-body attraction, giving a collision cross
sectionss«pd,Î«p, where«p is the relative kinetic energy.
The quantum approach that we follow in our discussion re-
lies on equilibrium conditions of the system; therefore, our
final result is a real equilibriumsnot metastable or stationaryd
distribution function that differs from the equilibrium
Maxwell-Boltzmann distribution. The existence of such an
unusual equilibrium function is due to the quantum uncer-
tainty as briefly described in Sec. V.

II. KINETIC EQUATION UNDER A GENERALIZED
RANDOM FORCE

A kinetic equation describing electrons in a plasma under
an external electric field, in which collisions between elec-
trons and neutral atoms are present, was derived by Chap-
man and Cowlingf13g, by Spitzerf14g and by Golant, Žilin-
skij, and Sacharovf15g. They express the actual one-body
velocity distribution function as a formal series,

f̃svd = f + f1 + f2 + ¯ ,

wheref = fsvd is the isotropic componentswith v= uvud, while
f1, f2, and so on describe next orders of anisotropy induced
by the external field. In addition,fsvd may be only a slight
perturbation of the Maxwellian distribution function.

Here, we adopt their equation in order to derive the mo-
mentum stationary distribution of ions, but we replace the
external electric field with a generalized random forceF and
focus on isotropic functionf only. The elastic collisional
cross sections that we are considering describe the interac-
tion among ions and among ions and electric dipoles of po-
larized neutral compounds of the Wigner-Seitz spheres. All
these cross sections will be discussed in the following sec-
tions.

Thus, considering the plasma component consisting of
ions of massm, the kinetic equation readsf15g

±
2

3

F2

m2n2

df

dv
+ kSvf +

kBT

m

df

dv
D = 0, s1d

wherev is the modulus of the relative velocity between two
ions, m is their reduced mass,nsvd is the collisional fre-
quency,kBT is the thermal energy, andk, which is defined as

k = 2
m2

m2 ,

is the energy transfer coefficientsor an average value of itd.
Let us discuss briefly the origin of the double sign in the

term containing the random forceF in Eq. s1d. The quantity

DF = ±
2

3

F2

m2n2

is the perturbation on the diffusion coefficient of the system
due to forceF, and the corresponding particle flux is given
by

JF = 7 DFn
df

dv
,

n being the ion particle density of the plasma. IfF were an
electric microfield, i.e.,F=eE swith e equal to the electric
charge of one iond, the corresponding sign would be positive,
thus enhancing the actual diffusivity of the system, while in
the opposite case total diffusivity would drop. Therefore, we
introduce the double sign since we wish to deal with the
most general situation, in which either subdiffusivity or su-
perdiffusivity may be significant.

The analytical solution of Eq.s1d reads

fsvd = fs0dexp3−E
0

v

dv8
mv8

kBT ±
2

3

F2

mkn2 4 , s2d

where the constantfs0d should be calculated through the
normalization condition

4pE
0

+`

dv8v82fsv8d = 1.

Let us now define a characteristic strength of the general-
ized random fieldF as

FC = nÎkmkBT.

Then, if the condition

F2 ! FC
2 s3d

holds, i.e., if the random force is negligible, Eq.s2d gives the
Maxwellian distribution function at temperatureT. The cen-
tral point is that in this case the Maxwellian function is a
solution of the kinetic equations1d regardless of any assump-
tion about collisional frequencyn of the plasma.

On the contrary, if the condition in Eq.s3d fails, the form
of the solutionfsvd is determined by the explicit dependence
of the collisional frequencyn on relative velocityv. Thensvd
frequency is itself a function of the collisional cross section
ssvd, as
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nsvd = nvssvd. s4d

Thus, in this case, Eq.s2d leads to a Maxwellian provided
that we choose thessvd=a0v−1 cross sectionsa0 being a
suitable constantd, and that we renormalize the temperature
of the plasma in the following fashion:

kBTeff = kBT ±
2

3

F2

kmn2a0
2 , s5d

whereTeff is an effective temperature which will be of cen-
tral importance in our subsequent discussion.

III. ANALYTICAL SOLUTION OF THE KINETIC
EQUATION

In the following, we discuss the effect of three different
cross sections,s0,s1, ands2, whose explicit functional de-
pendence on relative velocity, together with that of their col-
lisional frequencies, is, respectively,

s0svd = a0v
−1,

n0svd = na0, s6d

s1svd = a1,

n1svd = na1v, s7d

s2svd = a2v,

n2svd = na2v
2, s8d

wherea0,a1, anda2 are dimensional constants. In Sec. IV,
we shall discuss the physical meaning of the previous cross
sections in dense astrophysical plasmas.

We state the hypothesis of absence of interference be-
tween the three collision types, namely we assume that total
collisional frequencyn could be cast in the following ap-
proximate fashion:

n2 = n0
2 + n1

2 + n2
2,

because different types of collision act significantly only in
separate velocity intervals as is evident from the functional
dependencies reported in Eqs.s6d, s7d, ands8d.

Let us now express the solution of Eq.s2d as

fsvd = fs0dexpf− Isvdg, s9d

where we have defined the integral function

Isvd =E
0

v mv8dv8

kBT ±
2

3

F2

kmn2a0
2

1

1 + c1v82 + c2v84

=
m

kBT
E

0

v v8dv8

1 + t
1

1 + c1v82 + c2v84

, s10d

with c1=sa1/a0d2,c2=sa2/a0d2, andt=Teff /T−1, according
to Eqs.s5d, s6d, s7d, ands8d.

From Eq.s10d, we immediately obtain

Isvd =
mv2

2kBT
−

m

2kBT
tI1svd, s11d

where

I1svd =E
0

v2

du
1

c2u
2 + c1u + t + 1

. s12d

Let us now define the following parameter:

K = −
c1

2

4c2
+ t + 1,

whose sign is physically relevant, as we are about to show.
If K,0, Eq. s12d gives, apart from an unimportant nu-

merical term,

I1 =
1

2ÎuKuc2
FlnS2c2v

2 + c1 − 2ÎuKuc2

2c2v
2 + c1 + 2ÎuKuc2

D + constG ,

which in turn, through Eqs.s11d and s9d, yields our first
result sfor K,0d,

fsvd ~ expS−
mv2

2kBT
DS2c2v

2 + c1 − 2ÎuKuc2

2c2v
2 + c1 + 2ÎuKuc2

Dmt/4kBTÎuKuc2

.

In this case, cross sections1 dominates and the general-
ized random force fieldF does not play any role in the region
of interest for fusion reaction rate calculations in astrophysi-
cal plasmas, as the perturbation from the Maxwellian func-
tion vanishes in the limitv→ +` snevertheless, it can be of
interest in studies of some atomic processes such as radiative
recombination, whose cross section increases asv goes to
zero and which therefore has rates sensibly modified by
slight corrections at low velocityd.

As far as astrophysical plasmas are concerned, a more
interesting physical situation occurs whenK.0, namely, if
the condition

Teff

T
.

n1
4

4n0
2n2

2 =
a1

4

4a0
2a2

2 s13d

holds. Conditions13d is fulfilled providing force fieldF is

F . nÎ3

2
kmkBTSa1

4 − 4a0
2a2

2

a2
2 D , s14d

in the case of superdiffusivity, or instead

F , nÎ3

2
kmkBTS4a0

2a2
2 − a1

4

a2
2 D , s15d

when considering subdiffusivity.
From Eq.s12d, we obtain

I1svd =
1

K
E

0

v2

duFSÎc2

K
u +

c1

2ÎKc2
D2

+ 1G−1

=
1

ÎKc2
FarctanSÎc2

K
v2 +

c1

2ÎKc2
D − arctan

c1

2ÎKc2
G .

s16d
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Starting from Eqs.s11d, s12d, and s16d, we can express
Isvd as a formal series of powers ofv2,

Isvd =
mv2

2kBTeff
+ dS mv2

2kBTeff
D2

+ gS mv2

2kBTeff
D3

+ ¯ ,

where

d = ±
2

3

F2

km2n2

a1
2

a0
4 ,

and

g = ±
8

9

F2kBT

km3n2

a2
2

a0
4S1 −

a1
4

a0
2a2

2D +
16

27

F4

k2m4n4

a2
2

a0
6 ,

both beingudu , ugu!1.
Therefore, the final form of the one-body distribution

function under generalized random fields reads

fsvd ~ expF−
mv2

2kBTeff
GexpF− dS mv2

2kBTeff
D2G

3 expF− gS mv2

2kBTeff
D3G ,

which corresponds to an energy probability factor

fs«pd ~ expF−
«p

kBTeff
GexpF− dS «p

kBTeff
D2G

3 expF− gS «p

kBTeff
D3G , s17d

where «p=p2/ s2md is the center-of-mass kinetic energy,
given linear momentump=mv.

It is noteworthy that our result in Eq.s17d may be related,
at least for small deformations, to the nonextensive distribu-
tion function at the same effective temperatureTeff f9g,

fs«pd ~ F1 − s1 − qd
«p

kBTeff
G1/s1−qd

, s18d

whereq is called the entropic parameter. As can be straight-
forwardly shown after some manipulations, in the low defor-
mation limit sq−1d«p/ skBTeffd→0, Eq. s18d reduces to Eq.
s17d, provided thatd=s1−qd /2. Thus, this condition estab-
lishes a link between the entropic parameterq and our pa-
rameterd which comes from microfield strength and cross
sections. We point out that in the same limit, other distribu-
tions of generalized statistics also have the same behavior, as
explained in Ref.f23g.

We recall that in the recent past we have shown that if the
generalized random force is due to an electric microfield dis-
tribution, parameterd can be related to the nonextensive
sTsallisd entropic parameterq and the following analytical
expression can be derived:

d =
1 − q

2
= 12G2a4,

whereG is the plasma parameter anda is a dimensionless
parameter accounting for ion correlations in the ion-sphere
model s0.4,a,1d f16g.

From Eq. s17d it follows that there exist three different
intervals of relative velocity in which the evaluated correc-
tions due to the random field are sufficiently large to be
noteworthy. First of all, we observe that if«p,kBTeff, the
dominant factor is expf−«p/ skBTeffdg, namely the Maxwellian
factor characterized by cross sections0. The exponential fac-
tor with the d parameter, corresponding to collisional cross
sections1, becomes not negligible with respect to the Max-
wellian only when «p,kBTeff / udu; it is also often called
the Druyvenstein factor. Finally, the third term
expf−gs«p/kBTeffd3g arises when«p,ud /gukBTeff; as we shall
briefly describe in Sec. V, it can be related to quantum
energy-momentum uncertainty effects in dense astrophysical
plasmas.

In conclusion of this section, let us summarize that if the
random force field is absent or negligible, in spite of the
presence of whatever kind of collisional cross sections, all
stationary states which are solutions of the kinetic equation
have an analytical expression that coincides with the equilib-
rium Maxwellian distribution function. Therefore, the nonex-
tensive statistical description, at least in a classical frame-
work, requires as a first condition that particles be subjected
to a sufficiently strong random force field and, as a second
condition, that a constant collisional cross sectionsor de-
pending on higher positive powers of velocityd should act
among the particles of the system.

IV. COLLISIONAL CROSS SECTIONS
IN ASTROPHYSICAL PLASMAS

We wish to discuss the physical meaning of the collisional
processes related tos0,s1, and s2, defined in Sec. III and
inserted into the kinetic equation in order to derive the one-
body distribution function.

Cross sections0svd, defined in Eq.s6d, is the most impor-
tant one as it originates the well-known Maxwellian distri-
bution function even in the presence of a generalized random
field. Our first unavoidable requirement is that the solution of
the kinetic equationfEq. s1dg, at first order, shall be the Max-
wellian function, because the actual kinetic solution forF
=0 is indeed the Maxwellian, and we are dealing only with
slight corrections.

Following Ref. f17g, we can state that starting from an
interaction force that depends on distance asr−s, the corre-
sponding cross section isssvd~v−4/ss−1d. Therefore, in the
case of cross sections0svd~v−1, the underlying force goes
like r−5, while the potential energy is proportional tor−4, and
we can interpret it as the cross section due to the interaction
between an ionic charge and an electric dipole induced by
the ion on the neutral system of charges composing a Debye
spheref15g.

On the contrary, if we considered a pure Coulomb inter-
action due to a forceFC~ r−2 swith s=2d, it would give a
collisional cross section proportional tov−4; however, this
case is not physically suitable in the presence of an intensive
random force field because of induced divergences in the
distribution function at low velocities. Krook and Wu
showed in the pastf18g that collisional cross sections going
like v−1 and v−3 always produce a Maxwellian distribution
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after a sufficiently long time; however, their system is not
subjected to a random force field.

Cross sections1svd, defined in Eq.s7d, was introduced by
Ichimaru f19g in the framework of an ion-sphere model for
nonideal and weakly coupled plasmas with aG parameter of
order unity, and with a small number of ions inside the De-
bye sphere. In these physical conditions, the collisional cross
section, directly derived from the pure Coulomb one, is con-
stant according to the approximations of the model and it can
be cast in the simple form

s1svd < 2psaad2,

wherea is the correlation factor already introduced in Sec.
III and a is the interparticle distance. The correction due
to s1 on the probability function of energy is of order
expf−d«p

2/ skBTeffd2g, and shows the same behavior as the so-
called nonextensive corrective factorssee Ref.f20gd.

Cross sections2svd will be described in the next section.

V. EFFECTS OF QUANTUM ENERGY-MOMENTUM
UNCERTAINTY ON THE EQUILIBRIUM DISTRIBUTION

FUNCTION

Here we introduce simple arguments to synthetically ex-
plain the meaning and justify the use of cross sections2svd
defined in Eq.s8d and, at the same time, to show a possible
link between quantum energy-momentum uncertainty and
nonextensivity.

Quantum energy-momentum uncertainty in weakly non-
ideal dense stellar plasmas influences thermonuclear rates. In
fact, in classical physics, energy« and momentump sor «p
=p2/2m, with m reduced massd are linked by the dispersion
relationds« ,«pd=ds«−«pd. Nevertheless, if the particles can-
not be considered free,« and «p are independent variables.
For instance, an ion tunneling the Coulomb barrier during a
thermonuclear fusion reaction can interact simultaneously
with many other particles. In this case, the dispersion relation
is given by the functiondgs« ,«pd defined using the ansatz of
Kadanoff and Baymf11g. Under equilibrium conditions, and
this time without any random force field, the energy and
momentum generalized distribution function can be written
as

fs«,«pd =
ns«d

p
dgs«,«pd,

with

dgs«,«pd =
ImoRs«,«pd

s« − «p − ReoRd2 + sImoRd2 ,

wherens«d is the particle number distribution andoRs« ,«pd
is the mass operator for the one-particle retarded Green func-
tion.

Galitski� and Yakimetsf12g ssee also Refs.f21,22gd de-
rived that the quantum energy-momentum indeterminacy and
a nonzero value of ImoR lead to the nonexponential tail of
the energy probability factorfs«pd.

We limit ourselves to the case of a dispersion relation of
Lorentz type,

dgs«,«pd =
1

p

gs«,«pd
s« − «pd2 + g2s«,«pd

,

with

gs«,«pd = "ncoll
T s«,«pd = "nsts«pdS2«

m
D1/2

,

wherencoll
T s« ,«pd is the total collision frequency andsts«pd is

the collisional cross section.
Let us take the example of a pure Coulomb interaction.

We have that

gs«,«pd =
2p"ne4

«p
2 S2«

m
D1/2

,

and the momentum distribution becomes

fs«pd =E d«fs«,«pd =E d«
ns«d

p
dgs«,«pd

=
2

p3/2

Î«p

skBTd3/2ffMBs«pd + fQs«pdg, s19d

with

fMBs«pd = expS−
«p

kBT
D

and

fQs«pd =
2

3p
CskBTd3/2 1

«p
4 ,

whereC is a constant depending on densityn.
At high momenta, the last term in Eq.s19d can be many

orders of magnitude greater than the first one and represents
an enhancement of the tail, with important consequences in
the calculations of nuclear fusion rates.

We wish to verify if, by using a certain elastic collision
cross section, we can obtain from the quantum uncertainty
effect the nonextensive Tsallis distribution, limiting our-
selves, for simplicity, to the case of entropic parameterq
.1 f9g.

Following sand adapting to our present needs energy fluc-
tuations instead of temperature fluctuationsd the approach
outlined by Beck and Cohenf23g, we may state that any
non-Maxwellian energy probability function should be cast
in the form of a Laplace transformation of the function
d fsE,«pd which describes the nonideality of the systemf24g,

fs«pd =E
0

+`

dE expS−
E

kBT
Dd fsE,«pd.

The functiond fsE,«pd must be assumed to be a gamma
sor x2d function, in order to ensure thatfs«pd is a nonexten-
sive sTsallisd distribution f10,23g.

Let us compare this integral with the integral of Eq.s19d,
which can be written explicitly asfs«pd=ed« exps−« /
kBTddgs« ,«pd. Quantum uncertainty and nonextensivity are
two different and distinct causes of deformation of the
Maxwell-Boltzmann distribution. Nevertheless, they give the
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same effect if the microscopic interaction among the par-
ticles si.e., the collisional cross sectiond is of a particular
nature as we discuss below.

Let us turn our attention to the physical property of inter-
est, which is “width”Df of the d fsE,«pd distribution; it can
be shown that for the nonextensive distribution function, the
width is DNE,«p

2, while for the quantum uncertainty the
DQ,s2s«pd«p relation holds, wheress«pd is the collisional
cross section. If we now impose that superextensivity and
quantum uncertainty give the same physical effect on distri-
bution functions, we should require thatss«pd~Î«p or, in
terms of relative velocity,ssvd=s2svd~v. Thus, the cross
sections2 that we used in Sec. III is strongly related to both
quantum and nonextensive statistical effects. The nonexten-
sive and the Galitski�-Yakimets distributions result given by
the same expression.

Let us recover the behavior of the interaction force re-
sponsible for cross sectionss«pd,Î«p. We can write its de-
pendence on the relative coordinater of the two interacting
particles asf17g

Fsrd = f0S r

R0
D−s

,

where f0 is a dimensional constant,R0 is a characteristic
distance of the two-body center of mass with respect to a
given origin, ands is a negative or positive integer.

Defining the collisional cross section as

s = pd2

with

d , S f0
m

upu2D
1/ss−1d

,

in order to have the requested behavior ofss«pd~Î«p, we
must sets=−3. Let us recall that the case ofs=−3 is, from
the point of view of the orbit differential equation of motion,
one of the integrable cases, with solutions given in terms of
elliptical functionsf25g.

Therefore, the interacting force responsible for the colli-
sions that lead toss«pd,Î«p reads

FQsrd = 5 fQ0
S r

R0
D3

, r ø R0

0, r . R0,
6

where the cutoff is needed in order to avoid divergences of
the potential energy.

We may argue that forceFQsrd can be understood as a
tidal-like force f26g if we assume that an attractive central
force of intensity fQ0

, centered at a distanceR0 from the
center of mass of the two interacting particles separated by a
distancer, is superimposed. The tidal-like force acts globally
over all the particles of the system. This is the dynamical
requirement to recover the nonextensivesTsallisd distribution
in the framework of quantum energy-momentum uncertainty.
It is noteworthy and interesting to remark that by applying

the virial theorem to this case, we obtain negative kinetic
energy, which is, in fact, understandable and admissible by
the uncertainty principle.

We derive the analytical expression ofq by equaling the
complete expressions ofDNE andDQ. We obtain

q = 1 +
s"cd2n2sold2

25smc2d
R0

3

fQ0

,

wheren is the plasma density andol is of order of unityf22g.
The correction to the unity may be thought to be due to

the many-body effect over the two-body interacting system.
As an example, let us make the following numerical approxi-
mate evaluation offQ0

: if the correction is on the order of
10%, the densityn<10−14 fm−3, andR0<105 fm, we obtain,
for a proton plasmasmc2<460 MeVd,

fQ0
< 10−12 MeV/fm.

Before concluding this section, we remark that the nonex-
tensive distribution usually describes metastable states or sta-
tionary states of nonequilibrium systems. On the contrary, in
this case, quantum uncertainty with collisional cross section
ss«pd,Î«p gives a distribution function which belongs to an
equilibrium state, although different from the Maxwell-
Boltzmann distribution. Other generalized distributions have
recently been proposedf27g. For situations with small defor-
mation, our arguments are valid also for these distributions.

VI. CONCLUSIONS

We have set a kinetic equation suitable to describe the
stationary states of a weakly nonideal plasma of a stellar core
subject to generalized random forces. Provided that a random
force satisfying conditions14d for superextensivity ors15d
for subextensivity is present, the momentum distribution
function can be cast in the simple fashion of Eq.s17d to
which, besides the well-known Maxwellian factor, other
terms also contribute.

The momentum distribution function is formally identical
to the nonextensive distributionswhen q.1d expanded in
powers of s1−qd for slight deformation. An analytical ex-
pression ofq, the entropic parameter, can be derived in terms
of the elastic collision cross sections acting among the par-
ticles of the system.

The main point is that each correction factor is due to a
particular collisional process between ions, and that each of
them contributes in a well-defined interval of relative veloc-
ity, as shown at the end of Sec. III. All these corrections are
small, nevertheless they are not negligible at high energy,
i.e., in the region of ion spectrum of predominant interest for
calculations of nuclear reaction rates in astrophysical plas-
mas.

We have stressed that in physical conditions as, for ex-
ample, stars withG*1, many collisional processes may be
active, even at the same time, and that each one of them is
described by a cross section with a dependence over velocity
strongersproportional tov−1,v0, or even~vd than the simple
Coulomb scatteringsproportional tov−4d. This fact is inti-
mately related to statistical many-body effects and represents
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a link between dynamicssthe type of two-body elastic colli-
sionsd and statistical mechanicssthe momentum distribution
function of the stationary states involvedd.

Finally, in the framework of a quantum many-body de-
scription of the equilibrium state, considering the energy-
momentum uncertainty due to the noncommutativity of po-
sition and momentum operators, we have found that if the
collisional cross sectionss«pd behaves likeÎ«p, the distribu-
tion function coincides with the nonextensivesTsallisd distri-

bution function withq.1. The requested behavior of the
cross sectionss«pd is due to an interaction similar to a tidal-
like force. Therefore, the analogy between the quantum un-
certainty effect on the distribution and the nonextensive ef-
fect is achieved provided that an overall attractive interaction
is superimposed on the two-body interaction. This again rep-
resents a possible link between dynamics and statistical me-
chanics.

f1g D. D. Clayton,Principles of Stellar Evolution and Nucleosyn-
thesissThe University of Chicago Press, Chicago, 1968d.

f2g C. E. Rolfs and W. S. Rodney,Cauldrons in the CosmossThe
University of Chicago Press, Chicago, 1988d.

f3g C. A. Iglesias, Phys. Rev. A27, 2705s1983d.
f4g M. Yu. Romanovsky and W. Ebeling, Physica A252, 488

s1998d.
f5g S. Ichimaru, Rev. Mod. Phys.65, 255 s1993d; V. Castellaniet

al., Phys. Rep.281, 309 s1997d.
f6g F. Ferro, A. Lavagno, and P. Quarati, Eur. Phys. J. A21, 529

s2004d.
f7g L. E. Reichl,A Modern Course in Statistical Physics, 2nd ed.

sWiley, New York, 1998d.
f8g A. Einstein, Ann. Phys.33, 1275s1910d.
f9g C. Tsallis, J. Stat. Phys.52, 479 s1988d; G. Kaniadakis, M.

Lissia and, A. Rapisarda, Physica A305, no. 1–2s2002d; A.
Lavagno and P. Quarati, Chaos, Solitons Fractals13, 569
s2002d; http://tsallis.cat.cbpf.br/biblio.htm

f10g C. Beck, Phys. Rev. Lett.87, 180601s2001d.
f11g L. Kadanoff and L. P. Baym,Quantum Statistical Mechanics

sBenjamin, New York, 1962d.
f12g V. M. Galitski� and V. V. Yakimets, JETP51, 957s1966d; Sov.

Phys. JETP24, 3 s1967d.
f13g S. Chapman and T. G. Cowling,The Mathematical Theory of

Non-uniform GasessCambridge University Press, Cambridge,
1970d.

f14g L. Spitzer, Jr.,Physical Processes in the Interstellar Medium
sWiley, New York, 1978d.

f15g V. E. Golant, A. P. Žilinskij, and I. E. Sacharov,Osnovy Fiziki
PlasmysMIR, Moscow, 1983d.

f16g M. Coradduet al., Braz. J. Phys.29, 153 s1999d.
f17g D. R. Present,Kinetic Theory of GasessMcGraw-Hill, New

York, 1958d.
f18g M. Krook and T. T. Wu, Phys. Rev. Lett.36, 1107s1976d.
f19g S. Ichimaru,Statistical Plasma PhysicssAddison-Wesley, Red-

wood City, CA, 1992d.
f20g D. D. Claytonet al., Astrophys. J.199, 194 s1975d; G. Ka-

niadakiset al., Physica A 261, 359 s1998d.
f21g A. Abrikosov, L. Gor’kov, and I. Dzyaloshinskii,Quantum

Field Theory Methods in Statistical PhysicssPrentice Hall,
New York, 1962d; N. L. Aleksandrov, Phys. Plasmas5, 5
s1998d; A. N. Starostin, V. I. Savchenko, and N. J. Fisch, Phys.
Lett. A 274, 64 s2000d.

f22g A. N. Starostinet al., Physica A 305, 287 s2002d.
f23g C. Beck and E. G. D. Cohen, Physica A322, 267 s2003d.
f24g M. Coraddu et al., in Perspectives in Theoretical Nuclear

PhysicssWorld Scientific, Singapore, 2001d.
f25g H. Goldstein,Classical MechanicssAddison-Wesley, Reading,

MA, 1965d.
f26g H. Lamb,HydrodynamicssDover, New York, 1945d.
f27g G. Kaniadakis and M. Lissia, Physica A340, no. 1–3s2004d.

COLLISIONAL CROSS SECTIONS AND MOMENTUM… PHYSICAL REVIEW E 71, 026408s2005d

026408-7


